Motion \& Force at Robin Hill

Describing force and motion at the park! StudentIntroduction

- Balanced and unbalanced forces are at work all around you at Robin Hill
- Can you identify the forces you experience at the park and describe the motion using a distance-time graph?

TASK

You can work alone or in pairs.
\checkmark Enjoy the different activities at Robin Hill.

\checkmark Complete the tasks on the following pages.

Teaching resources by Education Destination Ltd.

 Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources www.edudest.ukThe boat is floating because the two forces acting on it are the same size, but acting in opposite directions.

The forces are balanced.

When forces acting on an object are balanced the object:
") stays still
" continues to move at the same speed in the same direction.

1. Add force arrows to the diagram below to show the boat is moving at the same speed in the same direction. Label your force arrows:
» thrust from the engine waterresistance

2 Now add force arrows to the force diagram on the left to show a boat accelerating through the water. Use the same labels as above.
Add an arrow to show direction of movement.

- Add force arrows to the following force diagrams. Q

> - Add an arrow to each diagram to show direction of movement.

Teaching resources by Education Destination Ltd. Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources www.edudest.uk

Can you calculate the speed of different people sliding down the Toboggan Run?

Background

- The speed of an object depends upon the distance moved and the time taken.
- To calculate speed you use the formula:

Speed $(\mathrm{m} / \mathrm{s})=$ distance $($ metres $) \div$ time (seconds)

teaching resources by Education Destination Ltd.

 Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources WWW.edudest.ukon\checkmark Kerry travelled down the toboggan run in 35 seconds.
Q. What was her average speed?

Speed $=$ distance \div time
Speed $=400 \div 35$
Speed $=11 \mathrm{~m} / \mathrm{s}$

TASK

It took Tom 40 seconds to travel down the toboggan run.
Calculate his average speed.

Step 2

Time yourself (if travelling in pairs) or your friends as they travel downthe toboggan run.

- Then use the formula speed = distance \div time to calculate your speed.

Remember:

- The distance of the toboggan run is 400 m
- The time needs to be measured in seconds
- The unit for speed is m / s

If you are unable to time yourself oryour friends here are some times we recorded for you.

Name	Time (s)	Calculation: speed=distance	Speed

Teaching resources by Education Destination Ltd.

Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources www.edudest.uk

Q	a	a	-
Terry	${ }^{28}$	- N	-
	0^{33}		

Step 3

- You can change the formula around to find different values:

Distance $=$ speed x time \& time $=$ distance \div speed

- The toboggan is designed to travel at a maximum speed of $20 \mathrm{~m} / \mathrm{s}$.

What would be the time taken to travel down the toboggan run at the maximum speed? Show your working out. Don't forget to include the units.

Teaching resources by Education Destination Ltd. Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources www.edudest.uk

The complete journey of the toboggan run can be represented by this distance-time graph.

TASK Add theselabels to the distance-time graph above:

1. Moving up the hill at a steady speed.
2. Stationary at the top of the hill for a few seconds.
3. Moving down the hill at a faster speed.

TASK

Draw a distance-time graph to show your journey on the Hill Billy Slide. Add these labels to your distance-time graph:

1. Walking up the steps to the top of the slide.
2. Waiting for your go.
3. Sliding down the Hill Billy slide.

Teaching resources by Education Destination Ltd. Curriculum relevant materials supporting school trips to the Isle of Wight Book today with Education Destination and get full access to this and hundreds more quality resources www.edudest.uk

